The advancement of computer vision technologies has led to significant improvements in object detection systems, which are critical for various applications in the automotive industry. The implementation and evaluation of object detection based on convolutional neural networks (CNN) takes front stage in this research article. A CNN-based object detection model is presented and evaluated for accuracy, precision, recall and F-1 score. The proposed model has shown the object detection accuracy of 97.33%. The experiments establish that the CNN based object detection substantially increases the precision of multiple objects’ recognition in the vehicular scenario. The proposed strategy of optimized CNN model is efficient for real-time vehicular applications thus contributing to the improvement of security and automation in current automobiles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Scalable Object Detection Solution for Vehicular Applications


    Beteiligte:
    Thakur, Kunal (Autor:in) / Soni, Dhruv (Autor:in) / Taneja, Ashu (Autor:in)


    Erscheinungsdatum :

    04.10.2024


    Format / Umfang :

    566805 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Scalable parallel simulator for vehicular collision detection

    Grinberg,I. / Wiseman,Y. / Univ.of Bar-Ilan,IL | Kraftfahrwesen | 2013


    Scalable parallel simulator for vehicular collision detection

    Grinberg, Ilan / Wiseman, Yair | IEEE | 2010



    Vehicular object detection device

    SAKAKIBARA KOSUKE / OHMI MASANOBU / YAMAMOTO SEIJI et al. | Europäisches Patentamt | 2018

    Freier Zugriff

    VEHICULAR OBJECT DETECTION DEVICE

    SAKAKIBARA KOSUKE / OHMI MASANOBU / YAMAMOTO SEIJI et al. | Europäisches Patentamt | 2017

    Freier Zugriff