In this paper, we present a synthesis pipeline and dataset for training / testing data in the task of traffic sign recognition that combines the advantages of data-driven and analytical modeling: GAN-based texture generation enables data-driven dirt and wear artifacts, rendering unique and realistic traffic sign surfaces, while the analytical scene modulation achieves physically correct lighting and allows detailed parameterization. In particular, the latter opens up applications in the context of explainable AI (XAI) and robustness tests due to the possibility of evaluating the sensitivity to parameter changes, which we demonstrate with experiments. Our resulting synthetic traffic sign recognition dataset Synset Signset Germany contains a total of 105500 images of 211 different German traffic sign classes, including newly published (2020) and thus comparatively rare traffic signs. In addition to a mask and a segmentation image, we also provide extensive metadata including the stochastically selected environment and imaging effect parameters for each image. We evaluate the degree of realism of Synset Signset Germany on the real-world German Traffic Sign Recognition Benchmark (GTSRB) and in comparison to CATERED, a state-of-the-art synthetic traffic sign recognition dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Synset Signset Germany: a Synthetic Dataset for German Traffic Sign Recognition


    Beteiligte:
    Sielemann, Anne (Autor:in) / Loercher, Lena (Autor:in) / Schumacher, Max-Lion (Autor:in) / Wolf, Stefan (Autor:in) / Roschani, Masoud (Autor:in) / Ziehn, Jens (Autor:in) / Beyerer, Juergen (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    4618021 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Synset Signset Germany: Synthetischer Bilddatensatz für Verkehrszeichenerkennung

    Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Mobilithek

    Freier Zugriff

    Synset Boulevard: Synthetischer Bilddatensatz für Vehicle Make and Model Recognition (VMMR)

    Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Mobilithek

    Freier Zugriff

    German Traffic Sign Recognition Using Convolutional Neural Network

    Santosh, G V S Sree / Kumar, G Chaitanya / Sandeep, G et al. | IEEE | 2022


    TRAFFIC SIGN RECOGNITION DEVICE AND TRAFFIC SIGN RECOGNITION METHOD

    MIYASATO KAZUHIRO / KOYASU TOSHIYA | Europäisches Patentamt | 2023

    Freier Zugriff

    TRAFFIC SIGN RECOGNITION DEVICE AND TRAFFIC SIGN RECOGNITION METHOD

    SHINOMIYA TERUHIKO | Europäisches Patentamt | 2017

    Freier Zugriff