In this study, the relation of the maximum ionization height (HmF2) and the critical frequency (FoF2) of F2 layer is examined within their parametric range through the International Reference Ionosphere extended towards the plasmasphere (IRI-Plas) model and the IONOLAB-TEC (Total Electron Content) observations. HmF2 and FoF2 are optimized using an iterational loop through Non-Linear Least Squares method by also using a physical relation constraint between these two parameters. Performance evaluation of optimization algorithm is performed separately for the cases running IRI-Plas with optimized parameters and TEC input; only with optimized parameters; only with TEC and finally with no optimized parameter and TEC input. As a conclusion, it is seen that using optimized parameters and TEC together as input produces best IRI-TEC estimates. But also using only optimized parameters (without TEC update) gives estimates with also very low RMS errors and is suitable to use in optimizations. HmF2 and FoF2 estimates are obtained separately for a quiet day, positively corrupted day, negatively corrupted day, a northern latitude and a southern latitude. HmF2 and FoF2 estimation results are compared with ionosonde data where available. This study enables the modification and update of empirical and deterministic IRI Model to include instantaneous variability of the ionosphere.
Optimization of F2 layer parameters using IRI-Plas model and IONOLAB Total Electron Content
01.06.2011
1265804 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Tjeukemeer - Kale plas krijgt voorzieningen
Online Contents | 1997
Tjeukemeer - Frieslands grootste plas krijgt allure
Online Contents | 1999
Rover 3500 Vanden Plas AR-Test
Kraftfahrwesen | 1982
|