Measurements from traffic sensors usually go missing at unanticipated moments as a result of detector malfunctioning, communication error, or erratic sampling. These missing data may weaken or even imperil the validity and effectiveness of data-driven traffic applications. The paper proposes a novel deep learning-based missing traffic imputation framework using self-attention based temporal convolutional network (ATCN) to achieve fast extraction of spatio-temporal traffic patterns. To be specific, our proposed ATCNImp model uses an encoder-decoder architecture with one-dimensional convolutional (Conv1D) layer to obtain spatial representations. Additionally, the ATCN module is utilized between the encoder and decoder to capture long-range spatial-temporal dynamics, further enhancing feature presentations and highlighting degradation information under traffic missing settings. Finally, the performance of our ATCNImp is verified using the public PeMS-BAY dataset. Experimental results reveal that ATCNImp outperforms the other four imputation models and provides stable imputation performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards missing traffic data imputation using attention-based temporal convolutional networks


    Beteiligte:
    Chen, Weiqiang (Autor:in) / Zhao, Jianlong (Autor:in) / Wang, Wenwen (Autor:in) / Dai, Huijun (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    890736 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Convolutional Low-Rank Tensor Representation for Structural Missing Traffic Data Imputation

    Li, Ben-Zheng / Zhao, Xi-Le / Chen, Xinyu et al. | IEEE | 2024


    Missing traffic data: comparison of imputation methods

    Li, Yuebiao / Li, Zhiheng / Li, Li | IET | 2014

    Freier Zugriff

    Missing traffic data: comparison of imputation methods

    Li, Yuebiao / Li, Zhiheng / Li, Li | Wiley | 2014

    Freier Zugriff


    Traffic Flow Data Imputation Based on Feature Fusion Attention Imputation Network

    Li, Shuang / Luo, Xianglong / Yang, Jiayu et al. | IEEE | 2023