Polygonal approximation of closed contours with minimum number of segments can be found by applying optimal algorithm for the open curves repeated for all possible starting points, or by using heuristic adjustment of the starting point. A better approach, however, is to extend the optimal algorithm from open to closed curves by extending the search space circularly. In this paper, we adopt this idea to the case of min-# problem. The proposed algorithm finds the optimal solution in less than 1.5 times of the time required by the open curve.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Min-# polygonal approximation of closed curves


    Beteiligte:
    Kolesnikov, A. (Autor:in) / Franti, P. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    138902 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Min-# Polygonal Approximation of Closed Curves

    Kolesnikov, A. / Franti, P. | British Library Conference Proceedings | 2005



    CLOSED POLYGONAL WING MEMBER AND USES THEREOF

    FAINVEITS (LUKASHOV) VASILII / SERGEI LOBANOV / SERGEJS TIMOFEJEVS | Europäisches Patentamt | 2024

    Freier Zugriff

    CLOSED POLYGONAL WING MEMBER AND USES THEREOF

    LUKASHOV VASILII / SERGEI LOBANOV / SERGEJS TIMOFEJEVS | Europäisches Patentamt | 2023

    Freier Zugriff

    Approximating Polygonal Curves in Two and Three Dimensions

    Miyaoku, K. / Harada, K. | British Library Online Contents | 1998