Novel detection schemes are developed using a coherent X-band radar for the detection of small pieces of icebergs. The methods use Wigner-Ville (WV) distribution to perform detection in a joint time-frequency space. Two separate methodologies are presented. The first method extracts classification features from the ambiguity function of the received signal and a neural network is used to perform detection based on these features. The second method uses the method of Principal Components Analysis (PCA) to extract essential information from the time-frequency space for classification. Using real radar data, results are presented and the developed methods are also compared to a conventional Doppler constant false-alarm rate (CFAR) processor.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Neural network-based radar detection for an ocean environment


    Beteiligte:
    Bhattacharya, T.K. (Autor:in) / Haykin, S. (Autor:in)


    Erscheinungsdatum :

    01.04.1997


    Format / Umfang :

    9984545 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Neural network-based radar detection for an ocean environment

    Bhattacharya, T.K. / Haykin, S. | Tema Archiv | 1997


    Neural Network-Based Radar Detection for an Ocean Environment

    Bhattacharya, T.K. | Online Contents | 1997



    A neural network approach to pulse radar detection

    Kwan, H.K. / Lee, C.K. | IEEE | 1993


    A Neural Network Approach to Pulse Radar Detection

    Kwan, H.K. | Online Contents | 1993