The error model is nonlinear when the azimuth angle of strapdown inertial navigation system (SINS) on stable base is large, and a new filter results from using Unscented Kalman filter for proposal distribution generation imbedding latest observed measurements in importance sampling step, and combining Gaussian mixture model and weighted expectation maximization (EM) algorithm to replace the traditional resampling step. And the “sample depletion” problem was lessened. It is demonstrated by simulation that this new approach has an improved estimation performance in Initial Alignment of Large Azimuth Misalignment on Static Base of SINS.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A novel nonlinear filter for initial alignment in strapdown inertial navigation system


    Beteiligte:
    Xiang Li, (Autor:in) / Liu Yu, (Autor:in) / Su Baoku, (Autor:in) / Jiang Xiaoxiong, (Autor:in)


    Erscheinungsdatum :

    01.12.2008


    Format / Umfang :

    558869 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch