At present, satellite remote sensing technology has become a research hotspot for establishing space sensing systems at home and abroad. In remote sensing image processing, detecting and matching feature points in remote sensing images play a key role. In this article, three mainstream image feature extraction and matching methods are introduced, namely the SIFT method, SURF method, and ORB method. Experiments are designed to test and compare the operating efficiency and matching accuracy of these three feature point extraction and matching algorithms in remote sensing image scenes. The conclusion is as follows: ORB method is the fastest, SURF is second, and SIFT is the slowest. In terms of correct matching rate, the SURF algorithm and ORB algorithm have the advantage and show a high correct matching rate in remote sensing image scenes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on feature matching algorithm of remote sensing scenes


    Beteiligte:
    Xu, Chenhang (Autor:in) / Dong, Enchong (Autor:in) / Zhang, Haiping (Autor:in)


    Erscheinungsdatum :

    12.10.2022


    Format / Umfang :

    1415348 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch