Pedestrian trajectory prediction plays an important role in both pedestrian collision avoidance systems and autonomous driving. However, most of the previous works have ignored the interaction between traffic participants or only take it into account implicitly based on neural networks, which need a large number of training data and hold poor scenario adaptability. Meanwhile, pedestrian changeable behaviors are also always overlooked in trajectory prediction. In this paper, we present a novel pedestrian trajectory prediction method that involves pedestrian intention and behavior information into prediction. Verification of this method has been conducted in our provided BPI dataset. Without previous training of pedestrian trajectories, the method shows good scenario adaptability and provides accurate path prediction results for eight defined typical pedestrian crossing-road scenarios in Is prediction horizon, especially for stopping scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Crossing-Road Pedestrian Trajectory Prediction Based on Intention and Behavior Identification


    Beteiligte:
    Wu, Haoran (Autor:in) / Wang, Likun (Autor:in) / Zheng, Sifa (Autor:in) / Xu, Qing (Autor:in) / Wang, Jianqiang (Autor:in)


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    917647 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Crossing-Road Pedestrian Trajectory Prediction via Encoder-Decoder LSTM

    Xue, Peixin / Liu, Jianyi / Chen, Shitao et al. | IEEE | 2019


    SYSTEM AND METHOD FOR PEDESTRIAN ROAD CROSSING INTENTION DETECTION

    UZIEL ROY / BIALER ODED / LEVI DAN | Europäisches Patentamt | 2024

    Freier Zugriff


    Crossing pedestrian trajectory prediction method and device

    WANG QING / TAN XIUQUAN | Europäisches Patentamt | 2022

    Freier Zugriff

    PIT: Progressive Interaction Transformer for Pedestrian Crossing Intention Prediction

    Zhou, Yuchen / Tan, Guang / Zhong, Rui et al. | IEEE | 2023