Recent work on face identification using continuous density Hidden Markov Models (HMMs) has shown that stochastic modelling can be used successfully to encode feature information. When frontal images of faces are sampled using top-bottom scanning, there is a natural order in which the features appear and this can be conveniently modelled using a top-bottom HMM. However, a top-bottom HMM is characterised by different parameters, the choice of which has so far been based on subjective intuition. This paper presents a set of experimental results in which various HMM parameterisations are analysed.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Parameterisation of a stochastic model for human face identification


    Beteiligte:
    Samaria, F.S. (Autor:in) / Harter, A.C. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    408433 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    The enDYNA preprocessing tool for model parameterisation

    Philipp, Oliver / Roehlich, Stefan | Tema Archiv | 2006


    From real to virtual tyre - tyre model parameterisation

    Schmid,A. / Foerschl,S. / IABG,Ottobrunn,DE | Kraftfahrwesen | 2009


    A Model Based Approach to Edge Detection and Parameterisation

    Morrison, S. / Linnett, L. M. / Institution of Electrical Engineers et al. | British Library Conference Proceedings | 1999


    Optimal ship hull via optimal parameterisation

    Peri, D. | Taylor & Francis Verlag | 2016


    Wing stiffness parameterisation for surrogate models

    Leong, Bennett / Coggon, Simon / Cooper, Jonathan | Springer Verlag | 2020