The Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA) is a 10-kg, 6U CubeSat in low-Earth orbit that was able to achieve subarcsecond pointing stability and repeatability. To date, this is the best pointing on a spacecraft of its size. This paper will analyze various aspects of the performance of its key piece of hardware-the payload. First, a model of the optics and imager, which is used to simulate stellar images, will be presented. The imager parameters used in this model were derived from simple ground measurements. Next, a centroiding algorithm is provided and used on the simulated images to predict centroiding performance. These results will be shown to match on-orbit telemetry of centroiding performance, validating the modeling approach. This paper will then describe an approach for and results of a geometric camera calibration algorithm to estimate the focal length, distortion, and alignment parameters. The modeling, analyses, and results presented in this paper provide key information that can be used in a time-domain pointing simulation or a frequency-domain pointing error analysis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Camera Modeling, Centroiding Performance, and Geometric Camera Calibration on ASTERIA


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.03.2019


    Format / Umfang :

    7858448 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    ASTERIA - Amazon GS Experiment

    Hughes, Kyle / DiPasquale, Peter / Fesq, Lorraine | NTRS | 2020


    Geometric camera calibration: the virtual camera approach

    Cumani, A. / Guiducci, A. | British Library Online Contents | 1995


    Camera calibration using geometric constraints

    Kearney, J.K. / Yang, X. / Zhang, S. | IEEE | 1989


    Infusing Intelligence into CubeSats with ASTERIA

    Kolcio, Ksenia / Troesch, Martina / Mackey, Ryan et al. | NTRS | 2021