The efficient functioning of public transportation systems is pivotal for societal connectivity and economic progress, as they serve as lifelines for commuting and mobility. However, the dependency on manual ticketing processes often leads to bottlenecks and inefficiencies, hindering smooth operations and customer satisfaction. This research work focuses on developing an Automated Ticketing System for public transportation, utilizing Computer Vision and Neural Networks. Through the incorporation of Neural Architecture Search and the integration of Deep Sort, a Deep Learning-based object tracking model, with aim to enhance system efficiency. The study demonstrates promising results, indicating the potential for streamlined ticketing processes in public transportation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Neural Network-Powered Conductorless Ticketing for Public Transportation


    Beteiligte:


    Erscheinungsdatum :

    03.05.2024


    Format / Umfang :

    1750061 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Smart Ticketing and Overcrowding Control System for Public Transportation

    Chavan, Puja / Padwal, Abhijeet / Pande, Yogesh et al. | IEEE | 2023



    Common Ticketing Service in Multimodal Transportation System

    Mondal, Md Ashifuddin / Rehena, Zeenat | Springer Verlag | 2021