Identifying the types of transportation modes that people use is a central problem in transportation research. Effective feature construction plays a crucial role in developing a successful machine learning model. In this study, we demonstrate an approach to identify commuters' transportation modes solely using raw GPS trajectory data. First, we transform the representation of location data points into a vector of motion features in the time domain. Next, we create fixed-length instances in the time domain. Subsequently, we transform the instances time-domain features into frequency-domain features using the fast Fourier transform. This results in a pool of features for the instances in both the time and frequency domains. We use the Sequential Forward Floating Selection technique to select the most informative features to train our models. We evaluate our approach using two distinct real-world GPS trajectory datasets. Our results show that the random forest classifier achieved an ROC-AUC scores of 79% and 89% on the respective datasets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Inferring Transportation Mode Using Pooled Features from Time and Frequency Domains


    Beteiligte:


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    470065 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Inferring Global Perceptual Contours from Local Features

    Guy, G. / Medioni, G. | British Library Online Contents | 1996


    Private vs. Pooled Transportation: Customer Preference and Congestion Management

    Arora, Kashish / Zheng, Fanyin / Girotra, Karan | Springer Verlag | 2022