This paper presents a novel method for 3D angle of arrival (AOA) localization using a mobile receiver with limited number of antennas. We propose three convolutional neural networks to estimate elevation and azimuth AOAs, along with their pairing from recorded signals in sequential time windows. Then, a multi-source 3D-localization algorithm is proposed to estimate source positions across recorded time windows. Simulation results validate the effectiveness and robustness of the proposed method even in scenarios where uncertainties arise regarding the receiver’s position or direction during movement.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Localization Using Convolutional Neural Networks with Mobile Array


    Beteiligte:
    Fadakar, Alireza (Autor:in) / Mansourian, Amir (Autor:in) / Akhavan, Saeed (Autor:in)


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    438981 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Convolutional Neural Networks based Denoising for Indoor Localization

    Njima, Wafa / Chafii, Marwa / Nimr, Ahmad et al. | IEEE | 2021


    Landmark localization on objects in images using convolutional neural networks

    ZIA MUHAMMAD ZEESHAN / TRAN QUOC-HUY / YU XIANG et al. | Europäisches Patentamt | 2019

    Freier Zugriff

    Autoregressive Model-Based Structural Damage Identification and Localization Using Convolutional Neural Networks

    Tang, Qizhi / Zhou, Jianting / Xin, Jingzhou et al. | Springer Verlag | 2020


    Surveillance system with landmark localization on objects in images using convolutional neural networks

    ZIA MUHAMMAD ZEESHAN / TRAN QUOC-HUY / YU XIANG et al. | Europäisches Patentamt | 2019

    Freier Zugriff