The proposed work presents a hybrid signal processing - three level deep learning framework leveraging transfer learning to detect incipient stator inter turn faults in induction motor drives. An experimental test rig is developed using a three phase squirrel cage induction motor to emulate various fault levels. This non-invasive methodology solely relies on the stator currents extracted from the developed test rig to detect the stator inter turn faults under its incipient condition under various conditions of load torque and speed. The framework integrates wavelet transform for initial feature extraction and a three stage deep learning architecture, comprising a convolution layer, a ResNet-50 block with pre-trained weights, and a shallow neural network of classification. The proposed strategy achieved a classification accuracy of 94.37% on the testing dataset. The model is also compared with other existing neural network architectures and displayed superior performance for the SITF diagnosis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detection of Incipient Stator Inter-Turn Faults in Induction Motor Drives Using Hybrid Deep Learning Architecture


    Beteiligte:


    Erscheinungsdatum :

    31.07.2024


    Format / Umfang :

    1744842 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Detection of Inter Turn Short Circuit Faults in Induction Motor Using Artificial Neural Network

    Menshawy A. Mohamed / Essam Mohamed / Al-Attar A. Mohamed et al. | DOAJ | 2020

    Freier Zugriff

    Detection of Inter Turn Short Circuit Faults in Induction Motor using Artificial Neural Network

    Mohamed, Menshawy / Mohamed, Essam / Mohamed, Al-Attar et al. | IEEE | 2020




    Stator Winding-Fault Detection for the Induction Motor Drives

    Aguayo, J. / Claudio, A. / Vela, L.G. et al. | IEEE | 2006