Accurate target parameter estimation of range, velocity, and angle is essential for vehicle safety in advanced driver assistance systems (ADAS) and autonomous vehicles. To enable spectrum sharing, ADAS may employ integrated sensing and communications (ISAC). This paper examines a dual-deconvolution automotive ISAC scenario where the radar waveform is known but the propagation channel is not, while in the communications domain, the channel is known but the transmitted message is not. Conventional maximum likelihood (ML) estimation for automotive target parameters is computationally demanding. To address this, we propose a low-complexity approach using the controlled loosening-up (CLuP) algorithm, which employs iterative refinement for efficient separation and estimation of radar targets. We achieve this through a nuclear norm restriction that stabilizes the problem. Numerical experiments demonstrate the robustness of this approach under high-mobility and noisy automotive environments, highlighting CLuP's potential as a scalable, real-time solution for ISAC in future vehicular networks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    CLuP-Based Dual-Deconvolution in Automotive ISAC Scenarios


    Beteiligte:


    Erscheinungsdatum :

    03.05.2025


    Format / Umfang :

    1329210 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Path loss measurement and modeling for low-altitude UAV scenarios towards 3GPP ISAC standadization

    MO Qingmei / ZHANG Yuxiang / LIU Yameng et al. | DOAJ | 2024

    Freier Zugriff

    The Foundation TEAM, ISAC

    Goel, Prem Shanker | Springer Verlag | 2021


    RIS-Assisted ISAC System

    Zhang, Shoushuo | DataCite | 2024


    ISAC with Emerging Communication Technologies

    Xu, Jie / Lyu, Zhonghao / Song, Xianxin et al. | Springer Verlag | 2023


    Deep Learning-Based Radar Detector for Complex Automotive Scenarios

    Franceschi, Roberto / Rachkov, Dmytro | IEEE | 2022