Trajectory prediction plays a crucial role in bridging the gap between perception and planning in autonomous driving systems. However, most existing methods perform motion forecasting directly in the coupled spatiotemporal space but disregard a more fundamental and faithful interpretation of path intentions. To address this challenge, we propose a novel Planning-inspired Hierarchical (PiH) trajectory prediction framework that selects path and goal intentions through a hierarchical lateral and longitudinal decomposition. For path selection, we propose a hybrid lateral predictor to choose fixed-distance lateral paths from a candidate set of map-based road-following paths and cluster-based free-move paths. For goal selection, we propose a lateral-conditional longitudinal predictor to choose plausible goals by sampling from the selected lateral paths. Finally, we incorporate lateral-longitudinal information to generate final future trajectories based on a category distribution of path-goal intentions. Experimental results demonstrate that PiH achieves competitive and well-balanced performance compared to state-of-the-art methods on both the Argoverse and the Waymo Open Motion Dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Planning-Inspired Hierarchical Trajectory Prediction via Lateral-Longitudinal Decomposition for Autonomous Driving


    Beteiligte:
    Li, Ding (Autor:in) / Zhang, Qichao (Autor:in) / Xia, Zhongpu (Autor:in) / Zheng, Yupeng (Autor:in) / Zhang, Kuan (Autor:in) / Yi, Menglong (Autor:in) / Jin, Wenda (Autor:in) / Zhao, Dongbin (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2024


    Format / Umfang :

    2707703 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Graph-based Planning-informed Trajectory Prediction for Autonomous Driving

    Dong, Qing / Jiang, Titong / Xu, Tao et al. | IEEE | 2022



    Local Trajectory Planning for Autonomous Driving

    Boroujeni, Zahra | DataCite | 2020


    Dynamic Trajectory Planning for Vehicle Autonomous Driving

    Zhang, Sumin / Deng, Weiwen / Zhao, Qingrong et al. | IEEE | 2013


    A Complete Concept for Combined Longitudinal and Lateral Trajectory Planning for Automated Driving on Highways

    Schucker, J. / Kohlmann, T. / Konigorski, U. | British Library Conference Proceedings | 2019