Hybrid precoding can support high data rate with low cost for millimeter wave (mmWave) multi-antenna systems. To achieve near-optimal performance with low computing latency and enable end-to-end learning, deep learning has been introduced for optimizing hybrid precoding. Most research efforts focus on learning hybrid precoding under static channels. In mobile communications, however, the channel aging effect incurs severe performance degradation of multi-antenna systems. In this paper, we resort to a proactive optimization method to learn the analog and digital precoders for multiple users in time-varying mmWave channels with implicit channel prediction. We consider the practical frame structure used in prevalent cellular systems, and propose a method to learn the hybrid precoding polices for multiple downlink subframes in parallel. Simulation results demonstrate that the proposed method performs closely to the hybrid precoding that assuming perfect future channel information and outperforms existing methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Proactive Hybrid Precoding for Time-varying mmWave Channel with Deep Learning


    Beteiligte:
    Wang, Ruiming (Autor:in) / Wu, Jiajun (Autor:in) / Yang, Chenyang (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    996457 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    MmWave Massive MIMO Hybrid Precoding Prediction in High Mobility Scenarios

    Yan, Yipai / Zhao, Honglin / Zhang, Jiayan et al. | IEEE | 2021


    Low Complexity Hybrid Precoding Using Beam Steering for mmWave MIMO Systems

    Cho, Minjung / Lee, Hyukyeon / Oh, Kyungmook et al. | IEEE | 2018




    Energy Efficiency Comparison of Digital and Hybrid Precoding in 1-Bit mmWave Massive MIMO

    Askerbeyli, Ferhad / Xu, Wen / Nossek, Josef A. | IEEE | 2023