Automotive radar systems have evolved to provide not only range, azimuth and Doppler velocity, but also elevation data. This additional dimension allows for the representation of 4D radar as a 3D point cloud. As a result, existing deep learning methods for 3D object detection, which were initially developed for LiDAR data, are often applied to these radar point clouds. However, this neglects the special characteristics of 4D radar data, such as the extreme sparsity and the optimal utilization of velocity information. To address these gaps in the state-of-the-art, we present RadarPillars, a pillar-based object detection network. By decomposing radial velocity data, introducing PillarAttention for efficient feature extraction, and studying layer scaling to accommodate radar sparsity, RadarPillars significantly outperform state-of-the-art detection results on the View-of-Delft dataset. Importantly, this comes at a significantly reduced parameter count, surpassing existing methods in terms of efficiency and enabling real-time performance on edge devices.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    RadarPillars: Efficient Object Detection from 4D Radar Point Clouds


    Beteiligte:


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    435171 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Top-down object detection from LiDAR point clouds

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    TOP-DOWN OBJECT DETECTION FROM LIDAR POINT CLOUDS

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    TOP-DOWN OBJECT DETECTION FROM LIDAR POINT CLOUDS

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Learning Semantics on Radar Point-Clouds

    Isele, Simon T. / Klein, Fabian / Brosowsky, Mathis et al. | IEEE | 2021


    Transformers for Object Detection in Large Point Clouds

    Ruppel, Felicia / Faion, Florian / Glaser, Claudius et al. | IEEE | 2022