The problem of automatically learning knowledge-directed control strategies is considered. In particular, the authors address the problem of learning object-specific recognition strategies from object descriptions and sets of interpreted training images. A separate recognition strategy is developed for every object in the domain. The goal of each recognition strategy is to identify any and all instances of the object in an image, and give the 3-D position (relative to the camera) of each instance. The goal of the learning process is to build a strategy that minimizes the expected cost of recognition, subject to accuracy constraints imposed by the user.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning 3D object recognition strategies


    Beteiligte:
    Draper, B.A. (Autor:in) / Riseman, E.M. (Autor:in)


    Erscheinungsdatum :

    01.01.1990


    Format / Umfang :

    459425 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Learning models for object recognition

    Felzenszwalb, P.F. | IEEE | 2001


    Learning Models for Object Recognition

    Felzenszwalb, P. F. / IEEE | British Library Conference Proceedings | 2001


    CAD-Based Vision: Object Recognition in Cluttered Range Images Using Recognition Strategies

    Arman, F. / Aggarwal, J. K. | British Library Online Contents | 1993


    METHOD AND APPARATUS FOR PROVIDING OBJECT RECOGNITION LEARNING METHOD FOR OBJECT RECOGNITION

    JEON JAE WOOK / TRAN NGUYEN NGOC DUONG / JEON HYUNGMIN et al. | Europäisches Patentamt | 2025

    Freier Zugriff