For traffic signal control of intersections in cities, a new controller based on reinforcement learning and fuzzy neural network is proposed in this paper. The fuzzy neural network has the advantages of both fuzzy control and neural network, and overcome the former's lack of self-learning and generalization ability, and the latter's lack of understandability. Meanwhile, the reinforcement learning can make the controller improve itself on line continually by the simple feedback of environment. The result of computational experiments shows that the proposed traffic signal control algorithm can achieve a more effective optimization control.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Signal Control Based on Reinforcement Learning and Fuzzy Neural Network


    Beteiligte:
    Zhao, Hongxia (Autor:in) / Chen, Songhang (Autor:in) / Zhu, Fenghua (Autor:in) / Tang, Haina (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    572125 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intersection traffic signal control method based on fuzzy reinforcement learning

    SONG ZHIHONG / LUO YIDONG / CHEN JIAXU et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Reinforcement learning-based traffic signal control

    Sheng, Liu Tian / Azman, Afizan Bin / Khan, Navid Ali et al. | IEEE | 2024


    Deep Reinforcement Learning-based Traffic Signal Control

    Ruan, Junyun / Tang, Jinzhuo / Gao, Ge et al. | IEEE | 2023


    Deep Reinforcement Learning-Based Traffic Signal Control

    Hu, Penghui / Zhang, Xinran / Hu, Jianming | ASCE | 2024


    Reinforcement learning-based multi-agent system for network traffic signal control

    Arel, I. / Liu, C. / Urbanik, T. et al. | Tema Archiv | 2010