This article addresses the problem of coherent change detection in repeat-pass synthetic aperture radar (SAR) imagery. A Bayesian approach is formulated as an alternative to conventional window-based change detection statistics that entail losses to spatial resolution. The proposed approach assigns prior distributions to the unobserved model variables to exploit spatial structure both in the geophysical scattering qualities of the scene and among the scene disturbances that take place between the passes. Variational expectation maximization is used to efficiently approximate the posterior distribution of the latent variables and the prior model hyperparameters. Experiments on simulated and measured interferometric SAR data pairs indicate the effectiveness of the proposed change detection method and highlight improvements over traditional window-based approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SAR Coherent Change Detection With Variational Expectation Maximization


    Beteiligte:
    Tucker, David (Autor:in) / Ash, Joshua N. (Autor:in) / Potter, Lee C. (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    6382842 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Expectation Maximization

    Setoodeh, Peyman / Habibi, Saeid / Haykin, Simon | Wiley | 2022



    Dense Photometric Stereo by Expectation Maximization

    Wu, T.-P. / Tang, C.-K. | British Library Conference Proceedings | 2006


    Joint Iterative Carrier Synchronization and Signal Detection Employing Expectation Maximization

    Zibar, D. / Hecker de Carvalho, L.H. / Estaran, J. et al. | British Library Online Contents | 2014


    Deep Generative Clustering with VAEs and Expectation-Maximization

    Adipoetra, Michael / Martin, Ségolène | ArXiv | 2025

    Freier Zugriff