Accelerated by the electric vehicle market's growth, research in autonomous driving emphasizes the critical role of lane detection in the development and pricing strategies of the electric vehicle market. Currently, lane detection methods primarily focus on processing static images, neglecting dynamic changes, thus limiting their application in complex environments. In the realm of lane detection research, attention needs to be directed not only towards dynamic features but also towards lane characteristics. To tackle these challenges, a new video lane detection network has been proposed. This network utilizes a CNN-based spatio-temporal memory network to input extracted low-level spatio-temporal lane memory features into the High-Level Lane Transformer (HLaneformer) module, effectively learning high-level lane features. Simultaneously, a lane memory is constructed to aggregate the features of target lanes. This enables a deep exploration of the low-level lane features predicted by the CNN network, effectively compensating for the limitations of CNN in handling thin and distant lane shapes. Experimental results demonstrate that MLM-Former outperforms existing video lane detection methods on three public datasets, achieving state-of-the-art performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    MLM-Former: Enhanced Video Instance Lane Detection via Spatio-temporal Memory and High-Level Lane Features


    Beteiligte:
    Wang, Xiaoqin (Autor:in) / Yin, Yunfei (Autor:in) / Zhang, Caizhi (Autor:in) / Bao, Xianjian (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    1435875 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Lane Detection Using Edge Detection and Spatio-Temporal Incremental Clustering

    Alamsyah, Sayyidul Aulia / Purwanto, Djoko / Attamimi, Muhammad | IEEE | 2021


    A Dynamic Spatio-Temporal Deep Learning Model for Lane-Level Traffic Prediction

    Bao Li / Quan Yang / Jianjiang Chen et al. | DOAJ | 2023

    Freier Zugriff

    ENHANCED LANE DETECTION

    LEI OLIVER / MURRAY ALLEN R | Europäisches Patentamt | 2018

    Freier Zugriff