We consider the problem of complementing the capacity of an existing network of macro base stations by dynamically placing a network of 5G small base stations in the form of Unnamed Aerial Vehicles UAV (better known as drones). Our goal is to maximize the capacity boost provided by the UAVs in each considered time frame and extend the battery life of the served mobile users. With this in mind, we propose two clustering algorithms that build on mobile users' spatio-temporal data excess demand (here intended as the portion of demand which is not satisfactory addressed by the existing macro base stations). For the numerical analysis, we use real Beijing downtown trajectory data. The obtained results show that our algorithms perform well and can be considered for enabling real time connection provisioning.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Placement of 5G Drone Base Stations by Data Field Clustering


    Beteiligte:


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    2812590 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Placement of mmWave Base Stations for Serving Urban Drone Corridors

    Singh, Simran / Bhattacherjee, Udita / Ozturk, Ender et al. | IEEE | 2021


    On the Number and 3D Placement of Drone Base Stations in Wireless Cellular Networks

    Kalantari, Elham / Yanikomeroglu, Halim / Yongacoglu, Abbas | IEEE | 2016


    Data-Driven Positioning of Drone Base Stations in Emergency Scenarios

    Pijnappel, T.R. / Van Den Berg, J.L. / Borst, S.C. et al. | IEEE | 2024


    DRONE CHARGING STATIONS

    EVANS MICHAEL STEWARD | Europäisches Patentamt | 2018

    Freier Zugriff

    DRONE LANDING STATIONS AND METHODS OF DEPLOYING DRONE LANDING STATIONS

    BYERS CHARLES / WALSH RYAN / PROKUSKI STEFAN et al. | Europäisches Patentamt | 2023

    Freier Zugriff