Recent advances in software-defined mobile networks (SDMNs), in-network caching, and mobile edge computing (MEC) can have great effects on video services in next generation mobile networks. In this paper, we jointly consider SDMNs, in- network caching, and MEC to enhance the video service in next generation mobile networks. With the objective of maximizing the mean measurement of video quality, an optimization problem is formulated. Due to the coupling of video data rate, computing resource, and traffic engineering (bandwidth provisioning and paths selection), the problem becomes intractable in practice. Thus, we utilize dual-decomposition method to decouple those three sets of variables. Extensive simulations are conducted with different system configurations to show the effectiveness of the proposed scheme.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Video Rate Adaptation and Traffic Engineering in Mobile Edge Computing and Caching-Enabled Wireless Networks


    Beteiligte:
    Liang, Chengchao (Autor:in) / He, Ying (Autor:in) / Yu, F. Richard (Autor:in) / Zhao, Nan (Autor:in)


    Erscheinungsdatum :

    01.09.2017


    Format / Umfang :

    1907346 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Cooperate Caching with Multicast for Mobile Edge Computing in 5G Networks

    Huang, Xiangyue / Zhao, Zhifeng / Zhang, Honggang | IEEE | 2017


    A Review on AI-Enabled Content Caching in Vehicular Edge Caching and Networks

    Masood, Arooj / Tuan, Do Quang / Lakew, Demeke Shumeye et al. | IEEE | 2023


    Mobile edge caching in heterogeneous vehicular networks

    Wu, Huaqing / Lyu, Feng / Shen, Xuemin | TIBKAT | 2022