Pose graph optimization helps reduce drift accumulated in pure odometry of visual simultaneous localization and mapping (SLAM) systems by solving a nonlinear least square problem, including both sequential constraints and loop-closing constraints. However, the covariances of all constraints are set to constant matrices or by manual setting. In this paper, we propose a novel approach to approximate covariances of constraints in pose graph optimization to better represent the true uncertainty of the underlying visual-inertial navigation system (VINS) that fuses inertial measurements and visual observations. Specifically, for sequential constraints, we propose to utilize nonlinear factor recovery to optimally extract covariance matrices from the accumulated visual-inertial odometry (VIO). For loop-closing constraints, we propose a dynamic scale estimation method to approximate the scales of the information matrices. To evaluate the effectiveness and robustness of the proposed method, we conduct extensive experiments on public and self-collected datasets in various environments. Results show that our proposed method achieves higher accuracy compared with naively-formulated pose graph optimization adopted by several state-of-the-art visual-inertial navigation systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Covariance Estimation for Pose Graph Optimization in Visual-Inertial Navigation Systems


    Beteiligte:
    Shi, Pengcheng (Autor:in) / Zhu, Zhikai (Autor:in) / Sun, Shiying (Autor:in) / Rong, Zheng (Autor:in) / Zhao, Xiaoguang (Autor:in) / Tan, Min (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    2571480 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Learning Pose Estimation for UAV Autonomous Navigation andLanding Using Visual-Inertial Sensor Data

    Baldini, Francesca / Anandkumar, Animashree / Murray, Richard M. | ArXiv | 2019

    Freier Zugriff

    Vision-Aided Inertial Navigation for Pose Estimation of Aerial Vehicles

    Saeedi, S. / Samadzadegan, F. / El-Sheimy, N. et al. | British Library Conference Proceedings | 2009