Radar has been regarded as the enabling sensor technology to realize the intelligent transportation system. The current works in traffic radar mainly focus on detecting the target with fixed size. However, traffic scenarios consist of various targets with different sizes. Therefore, in this paper, we propose a CenterNet-based radar signal processing framework for detecting and classifying four types of traffic targets on the Range-Doppler map, and illustrate CenterNet can achieve higher detection rate, lower false alarm rate, and better classification performance with the help of the Anchor-free structure, shows the usability of CenterNet for radar detection and classification in traffic scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust Radar Detection and Classification of Traffic Vehicles Based on Anchor-free CenterNet


    Beteiligte:
    Guo, Zuyuan (Autor:in) / Yi, Wei (Autor:in) / Wu, Yuanhang (Autor:in) / Luo, Tai (Autor:in)


    Erscheinungsdatum :

    04.11.2021


    Format / Umfang :

    1589572 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Ear Detection based on CenterNet

    Yuan, Li / Mao, Junying / Zheng, Heliang | IEEE | 2020


    Vehicle Light Detection Method Based on Improved CenterNet

    Li, Shisheng / Mao, Li / Wang, Liming et al. | Springer Verlag | 2022


    Improvement Based on CenterNet and Application of Traffic Scenarios

    Pan, Fahui / Gao, Ge / Mao, Xinbo et al. | IEEE | 2023