Efficient traffic monitoring is playing a fundamental role in successfully tackling congestion in transportation networks. Congestion is strongly correlated with two measurable characteristics, the demand and the network density that impact the overall system behavior. At large, this system behavior is characterized through the fundamental diagram of a road segment, a region or the network.In this paper we devise an innovative way to obtain the fundamental diagram through aerial footage obtained from drone platforms. The derived methodology consists of 3 phases: vehicle detection, vehicle tracking and traffic state estimation. We elaborate on the algorithms developed for each of the 3 phases and demonstrate the applicability of the results in a real-world setting.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Extracting the fundamental diagram from aerial footage


    Beteiligte:
    Makrigiorgis, R. (Autor:in) / Kolios, P. (Autor:in) / Timotheou, S. (Autor:in) / Theocharides, T. (Autor:in) / Panayiotou, C.G. (Autor:in)


    Erscheinungsdatum :

    01.05.2020


    Format / Umfang :

    210856 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Graph-Based Image Segmentation for Road Extraction from Post-Disaster Aerial Footage

    Nicholas Paul Sebasco / Hakki Erhan Sevil | DOAJ | 2022

    Freier Zugriff

    The Roswell Film Footage

    Mantle, P. / Mutual UFO Network Incorporated | British Library Conference Proceedings | 1996




    Method of remotely obtaining drone footage.

    HANSCOM ERIC | Europäisches Patentamt | 2020

    Freier Zugriff