The non-randomized optimal hard decision fusion under Neyman-Pearson criterion is known to be an NP-hard classical 0–1 Knapsack problem with exponential complexity. In this paper, we show analytically that though the low-complexity non-randomized single-threshold likelihood ratio based test (non-rand-st LRT) is sub-optimal, its performance approaches the upper-bound obtained by randomized LRT (rand LRT) with the increase in the number of participating sensors (N). This alleviates the need for employing the exponentially complex non-randomized optimal solution for large N. Receiver operating characteristics are plotted to verify the performance of the non-rand-st LRT with reference to the upper-bound obtained by rand LRT for different scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On non-Randomized Hard Decision Fusion Under Neyman-Pearson Criterion Using LRT




    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    173774 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An experimental evatuation of the Neyman-Pearson detector

    Woods, J. / Estes, A. | Tema Archiv | 1983


    Crack Identification in Solid Rocket Motors Through the Neyman–Pearson Detection Theory

    Cholevas, Nicholas / Anyfantis, Konstantinos N. / Mußbach, Günter et al. | AIAA | 2023


    Decision making system using machine learning and Pearson for heart attack

    Thirumalai, Chandrasegar / Duba, Anudeep / Reddy, Rajasekhar | IEEE | 2017



    Quantile Streamflow Estimates Based on the Neyman-Scott Rainfall Model

    Mondonedo, Carlo Arturo San Juan / Tachikawa, Yasuto / Takara, Kaoru | HENRY – Bundesanstalt für Wasserbau (BAW) | 2008

    Freier Zugriff