We investigate the use of the L/sub /spl infin// cost function in geometric vision problems. This cost function measures the maximum of a set of model-fitting errors, rather than the sum-of-squares, or L/sub 2/ cost function that is commonly used (in least-squares fitting). We investigate its use in two problems; multiview triangulation and motion recovery from omnidirectional cameras, though the results may also apply to other related problems. It is shown that for these problems the L/sub /spl infin// cost function is significantly simpler than the L/sub 2/ cost. In particular L/sub /spl infin// minimization involves finding the minimum of a cost function with a single local (and hence global) minimum on a convex parameter domain. The problem may be recast as a constrained minimization problem and solved using commonly available software. The optimal solution was reliably achieved on problems of small dimension.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    L/sub /spl infin// minimization in geometric reconstruction problems


    Beteiligte:
    Hartley, R. (Autor:in) / Schaffalitzky, F. (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    306184 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    L-Minimization in Geometric Reconstruction Problems

    Hartley, R. / Schaffalitzky, F. / IEEE Computer Society | British Library Conference Proceedings | 2004



    Globally Optimal Estimates for Geometric Reconstruction Problems

    Kahl, F. / Henrion, D. | British Library Online Contents | 2007


    Globally Optimal Estimates for Geometric Reconstruction Problems

    Kahl, F. / Henrion, D. / IEEE | British Library Conference Proceedings | 2005