We lay ground for a comprehensive investigation of “traffic-related” threats to vehicular networks. While current research in the vehicular networks security area has done a good job in recognizing standard security and cryptographic threats, detailed modeling and analysis of threats that are specific to vehicle traffic are rarely considered in the literature. In this paper we study the problem of modeling traffic-related attacks in vehicular networks and presenting automatic and efficient (i.e., no human intervention and no expensive cryptographic protocols) solutions to prevent or tolerate a number of these attacks. To prevent these attacks, we propose techniques based on the capability of implementing simple and non-interactive voting algorithms using the mere participations of vehicles to the vehicular network. We provide analysis and simulation results in typical urban environments validating our techniques. Previous work required interactive protocols to implement voting or consensus techniques and implicitly left open the question we solve in this paper.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Non-interactive malicious behavior detection in vehicular networks


    Beteiligte:
    Di Crescenzo, G (Autor:in) / Yibei Ling, (Autor:in) / Pietrowicz, S (Autor:in) / Tao Zhang, (Autor:in)


    Erscheinungsdatum :

    01.12.2010


    Format / Umfang :

    189535 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Detecting and mitigating malicious behavior in vehicular DTNs

    Guo, Yinghui | TIBKAT | 2014

    Freier Zugriff

    Secure Vehicular Crowdsensing and Malicious Vehicles Detection in VANETs

    Xia, Yingjie / Liu, Xuejiao / Wu, Huihui et al. | Springer Verlag | 2025


    Detection of malicious data in vehicular ad-hoc networks for traffic signal control applications

    Placzek, Bartlomiej / Bernas, Marcin | ArXiv | 2017

    Freier Zugriff