Anomaly detection in metro passenger flow is significant for the operation of metro system. Metro smart card data can provide more accurate data sources for detect anomalous metro passenger flow. This paper proposes a data-driven method based on random matrix theory (RMT) to detect anomaly in metro passenger flow. The method mainly includes three parts: matrix construction in metro passenger flow, the transform of raw matrix and the detection with RMT (M-P Law and Ring Law). Two cases are designed and conducted to validate the performance of the method based on RMT. The results indicate that the method can achieve an acceptable detection performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Anomaly Detection in Metro Passenger Flow Based on Random Matrix Theory


    Beteiligte:
    CHEN, Xiaoxu (Autor:in) / YANG, Chao (Autor:in) / XU, Xiangdong (Autor:in) / GONG, Yubing (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    645207 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real‐time passenger flow anomaly detection in metro system

    Wei, Xiulan / Zhang, Yong / Zhang, Xinyu et al. | Wiley | 2023

    Freier Zugriff

    Real‐time passenger flow anomaly detection in metro system

    Xiulan Wei / Yong Zhang / Xinyu Zhang et al. | DOAJ | 2023

    Freier Zugriff


    Dynamic Planning of Metro Access Mode Based on Passenger Flow Detection

    Zhao, Jianyou / Du, Bangshen / Lv, Yunfei et al. | ASCE | 2020


    Dynamic Planning of Metro Access Mode Based on Passenger Flow Detection

    Zhao, Jianyou / Du, Bangsben / Lv, Yunfei et al. | TIBKAT | 2020