Autonomous driving in unstructed environments has attracted an unprecedented level of attention when the DARPA announced the Grand Challenge Competitions in 2004 and 2005. Autonomous driving involves (at least) three major subtasks: perception of the environment, path planning and subsequent vehicle control. Whereas the latter has proven a solved problem, the first two constituted, apart from hardware failures, the most prominent source of errors in both Grand Challenges. This paper presents a system for real-time feature detection and subsequent path planning based on multiple stereoscopic and monoscopic vision cues. The algorithm is, in principle, suitable for arbitrary environments as the features are not tailored to a particular application. A slightly modified version of the system described here has been succesfully used in the Qualifications and the Final Race of the Grand Challenge 2005 within the Desert Buckeyes' autonomous vehicle.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-based path-planning in unstructured environments


    Beteiligte:
    Hummel, B. (Autor:in) / Kammel, S. (Autor:in) / Thao Dang, (Autor:in) / Duchow, C. (Autor:in) / Stiller, C. (Autor:in)


    Erscheinungsdatum :

    01.01.2006


    Format / Umfang :

    7001025 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vision-based Path-planning in Unstructured Environments

    Hummel, B. / Kammel, S. / Dang, T. et al. | British Library Conference Proceedings | 2006


    A UAV Global Planner to Improve Path Planning in Unstructured Environments

    Rocha, Lidia / Aniceto, Marcela / Araujo, Igor et al. | IEEE | 2021


    Vehicle Planning in Unstructured Environments

    Green, Alexander / Rye, David / Durrant-Whyte, Hugh | AIAA | 2005


    Path planning in image space for autonomous robot navigation in unstructured environments

    Otte, M. W. / Richardson, S. G. / Mulligan, J. et al. | British Library Online Contents | 2009


    UAV Path Planning Based on Vision

    Zhang, Le / Chen, Junfeng / Wu, Chao et al. | IEEE | 2023