Frequency modulated continuous wave (FMCW) radar can precisely detect moving objects utilizing the Doppler information. However, only exploiting the Doppler information in one frame can usually lead to object false detection when static background has large radar cross section or the moving objective occludes some static background. In this paper, we investigate the moving objective detection problem with FMCW radar through utilizing the Doppler information in multiple frames to increase objective detection accuracy. To solve this problem, an online tensor robust principal component analysis (RPCA) algorithm is proposed with low hardware and computation complexity. The proposed algorithm can maintain the intrinsic tensor data structure. Experimental results show that the proposed algorithm can accurately detect the static background and moving object even for the case of occlusion or static object with large RCS.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Online Tensor Method for Moving Objective Detection with FMCW Radar


    Beteiligte:
    Lu, Yunfei (Autor:in) / Zhang, Zhaoyang (Autor:in) / Tong, Xin (Autor:in) / Yang, Zhaohui (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    2684555 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Interference Mitigation for Automotive FMCW Radar With Tensor Decomposition

    Wang, Yunxuan / Huang, Yan / Liu, Jiang et al. | IEEE | 2024


    FMCW RADAR SYSTEM

    MITSUMOTO MASA / HIRATA KAZUFUMI | Europäisches Patentamt | 2015

    Freier Zugriff

    Length Prediction of Moving Vehicles Using a Commercial FMCW Radar

    Park, Jeong-Ki / Choi, In-Oh / Kim, Kyung-Tae | IEEE | 2022


    94 GHz FMCW radar for obstacle detection

    Yamamoto, K. / Yamada, K. / Yonemoto, H. et al. | Tema Archiv | 2003


    FMCW Radar Post Processing Method for Small Displacement Detection

    Pramudita, A. A / Suratman, Fiky. Y / Arseno, Dharu et al. | IEEE | 2018