In multiple-antenna communication systems, it is crucial for the base station to acquire accurate downlink Channel State Information (CSI) to optimize signal transmission through beamforming. However, with the absence of the channel reciprocity, the mobile station must follow the process of channel estimation with feeding the CSI back to the base station. This can introduce a substantial overhead that increases with the number of antennas and the bandwidth. Therefore the CSI must be first compressed and quantized before reporting. In this paper we introduce a novel approach that based on combining Dynamic Mode Decomposition (DMD) with Residual Vector Quantization (RVQ). RVQ adapts the quantization accuracy based on the DMD output, namely the modes. This strategy allows the system to prioritize important feedback data and reduce the overhead bits needed for less critical data. Simulation results show that our approach can reduce the CSI feedback overhead while maintaining the target channel reconstruction accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Residual Vector Quantization for Dynamic Mode Decomposition-Based CSI Feedback in MIMO Systems


    Beteiligte:
    Zhu, Lingrui (Autor:in) / Haddad, Fayad (Autor:in) / Bockelmann, Carsten (Autor:in) / Dekorsy, Armin (Autor:in)


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    713620 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive DNN-based CSI Feedback with Quantization for FDD Massive MIMO Systems

    Gao, Junjie / Bouazizi, Mondher / Ohtsuki, Tomoaki et al. | IEEE | 2022


    Predictive residual vector quantization

    Rizvi, S.A. / Nasrabadi, N.M. | IEEE | 1994


    Predictive Residual Vector Quantization

    Rizvi, S. A. / Nasrabadi, N. M. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    MADDNESS Detector for MIMO Systems with Learning Vector Quantization

    Qian, Shuangyi / Gong, Shuaicong / Zhao, Chunming et al. | IEEE | 2024


    Adaptive Vector-Quantization Scheme

    Cheung, Kar-Ming | NTRS | 1992