Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be used to analyze high dimensional data that lies on or near a low dimensional manifold. It overcomes certain limitations of previous work in manifold learning, such as Isomap and locally linear embedding. We illustrate the algorithm on easily visualized examples of curves and surfaces, as well as on actual images of faces, handwritten digits, and solid objects.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unsupervised learning of image manifolds by semidefinite programming


    Beteiligte:
    Weinberger, K.Q. (Autor:in) / Saul, L.K. (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    610775 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unsupervised Learning of Image Manifolds by Semidefinite Programming

    Weinberger, K. Q. / Saul, L. K. | British Library Online Contents | 2006


    Unsupervised Learning of Image Manifolds by Semidefinite Programming

    Weinberger, K. / Saul, L. / IEEE Computer Society | British Library Conference Proceedings | 2004


    Multiclass Image Labeling with Semidefinite Programming

    Keuchel, J. | British Library Conference Proceedings | 2006


    Recursive Inertia Estimation with Semidefinite Programming

    Manchester, Zachary R. / Peck, Mason A. | AIAA | 2017


    Solving Control Allocation Problems Using Semidefinite Programming

    Jae-Hyuk Oh / Michael B. Jamoom / Marc W. McConley et al. | AIAA | 1999