We optimize over the set of corrected Laplacians (CL) associated with a weighted graph to improve the average case normalized cut (NCut) of a graph. Unlike edge-relaxation SDPs, optimizing over the set CL naturally exploits the matrix sparsity by operating solely on the diagonal. This structure is critical to image segmentation applications because the number of vertices is generally proportional to the number of pixels in the image. CL optimization provides a guiding principle for improving the combinatorial solution over the spectral relaxation, which is important because small improvements in the cut cost often result in significant improvements in the perceptual relevance of the segmentation. We develop an optimization procedure to accommodate prior information in the form of statistical shape models, resulting in a segmentation method that produces foreground regions which are consistent with a parameterized family of shapes. We validate our technique with ground truth on MRI medical images, providing a quantitative comparison against results produced by current spectral relaxation approaches to graph partitioning.
Corrected Laplacians: closer cuts and segmentation with shape priors
01.01.2005
473801 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
A Multiphase Level Set Based Segmentation Framework with Pose Invariant Shape Priors
British Library Conference Proceedings | 2006
|Graph cuts segmentation using an elliptical shape prior
IEEE | 2005
|Graph Cuts Segmentation using an Elliptical Shape Prior
British Library Conference Proceedings | 2005
|Statistical Priors for Efficient Combinatorial Optimization Via Graph Cuts
British Library Conference Proceedings | 2006
|