This paper presents the theory of a new multiple model probabilistic data association filter (PDAF). The analysis is generalized for the case of multiple nonuniform clutter regions within the measurement data that updates each model of the filter. To reduce the possibility of clutter measurements forming established tracks, the solution includes a model for a visible target. That is, a target that gives sensor measurements that satisfy one of the target models. Other features included in the algorithm are the selection of a fixed number of nearest measurements and the addition of signal amplitude to the target state vector. The nonuniform clutter model developed here is applicable to tracking signal amplitude. Performance of this algorithm is illustrated using experimentally recorded over-the-horizon radar (OTHR) data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    PDAF with multiple clutter regions and target models


    Beteiligte:
    Colegrove, S.B. (Autor:in) / Davey, S.J. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    498829 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    PDAF with Multiple Clutter Regions and Target Models

    Colegrove, S.B. | Online Contents | 2003


    Optimization and analysis of PDAF with Bayesian detection

    Le Zheng / Tao Zeng / Quanhua Liu et al. | IEEE | 2016