System Verification and Validation Testing (V&V) for time-dependent systems requires the generation of test cases. Each test case is defined by a set of initial conditions and an expected outcome at the end of the specified time period. Traditional methods for generating V&V test-cases run simulations of the system to generate outcomes for each combination of initial conditions. Due to the combinatorics of even a small set of initial conditions, covering the complete combinatorics can be time and/or cost prohibitive.This paper evaluates the feasibility of using Deep Learning Neural Networks (DLNN) to generate additional test cases that were not generated by the simulations due to time limitation. A DLNN trained to on the subset of test-cases from the simulation, learns the underlying behavior of the system, and is used to generated additional test cases. A case study for using DLNN to predict test-cases for trajectory conflicts demonstrates the feasibility of this approach for time-dependent systems that exhibit bounded, deterministic behavior. The implications of these results, the limitations, and future work are discussed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards Trajectory Conflict Prediction Using AI/ML For V&V Test Case Generation


    Beteiligte:
    Mingus, Wyatt (Autor:in) / Sherry, Lance (Autor:in) / Shortle, John (Autor:in)


    Erscheinungsdatum :

    18.04.2023


    Format / Umfang :

    1031441 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Algorithm of conflict probability prediction for the case of trajectory change

    Wei, D. / Jun, Z. / Xian, W. et al. | British Library Online Contents | 2005


    Method for optimal conflict-free aircraft trajectory generation

    Han, Yun-Xiang / Zhang, Jian-Wei / Huang, Xiao-Qiong | Emerald Group Publishing | 2019



    Improved Prandini Conflict Detection Algorithm Based on Trajectory Prediction

    Gong, Fengxun / Li, Xinyue | SAE Technical Papers | 2023