Entropy constrained vector quantization (ECVQ) is a clustering technique [1] that has been successfully used to describe efficiently large amounts of data collected by the NASA Earth Observing System. The manipulation of this algorithm requires the user to set two parameters: the entropy Lagrange multiplier, and the initial guess for the number of clusters. In this work, we describe an integrated solution that uses a differential evolution algorithm to determine these two parameters. By optimizing two objective functions, entropy and distortion, we find that the solution that best describes the data is located at the inflection point in the Pareto front, i.e. at the point where the tradeoff between the two competing objectives does not favor either one.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Entropy Constrained Clustering Algorithm Guided by Differential Evolution


    Beteiligte:


    Erscheinungsdatum :

    01.03.2008


    Format / Umfang :

    2145250 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Differential Evolution Algorithm for Phased Constrained Optimization

    Wu, H. / Chen, T. / Hu, C. et al. | British Library Online Contents | 2012


    Chaotic differential evolution algorithm for resource constrained project scheduling problem

    Chen, Weiming / Ni, Xiaoyang | British Library Online Contents | 2014



    Dynamic and random differential evolution solving constrained optimisation problems

    Zhang, Q. / Zeng, S. / Li, C. | British Library Online Contents | 2014


    Rough Set Clustering Algorithm Based on Entropy and Information Granularity

    Ming, H. / Boqin, F. / Zhaofeng, M. | British Library Online Contents | 2005