We present the SnapNet system, which provides accurate real-time map matching for cellular-based trajectory traces. Such traces are characterized by input locations that are far from the actual road segment, errors on the order of kilometers, back-and-forth transitions, and highly sparse input data. SnapNet applies a series of filters to handle the noisy locations and an interpolation stage to address the data sparseness. At the core of SnapNet is a novel incremental HMM algorithm that combines digital map hints in the estimation process and a number of heuristics to reduce the noise and provide real-time estimations. Evaluation of SnapNet using actual traces from different cities covering more than 400 km shows that it can achieve a precision and recall of more than 90% under noisy coarse-grained input location estimates. This maps to over 97% and 34% enhancement in precision and recall, respectively, when compared to the traditional HMM map-matching algorithms. Moreover, SnapNet has a latency of 0.58 ms per location estimate.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Accurate Real-time Map Matching for Challenging Environments


    Beteiligte:
    Mohamed, Reham (Autor:in) / Aly, Heba (Autor:in) / Youssef, Moustafa (Autor:in)


    Erscheinungsdatum :

    01.04.2017


    Format / Umfang :

    2087284 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Real-time Stereo Disparity Quality Improvement for Challenging Traffic Environments

    Xu, Yuquan / Mita, Seiichi / Tehrani, Hossein et al. | IEEE | 2018


    REAL-TIME STEREO DISPARITY QUALITY IMPROVEMENT FOR CHALLENGING TRAFFIC ENVIRONMENTS

    Xu, Yuquan / Mita, Seiichi / Tehrani, Hossein et al. | British Library Conference Proceedings | 2018


    Real-time data dissemination and analytics platform for challenging IoT environments

    Daneels, Glenn / Municio, Esteban / Spaey, Kathleen et al. | BASE | 2017

    Freier Zugriff