This paper considers a fleet of electric vehicles and drones that deliver goods collaboratively. To determine the optimal routes of this electric vehicle-drone routing problem, the problem is formulated as a mixed-integer linear program to minimize the total operational costs. To solve the model, we develop an adaptive memetic algorithm that employs a multi-operator concept with a Q-learning-based selection mechanism and a set of local search operators for exploring the complex search space of the problem. Using extensive numerical experiments, we prove the effectiveness of our proposal and reveal some interesting managerial insights.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Adaptive Memetic Algorithm for a Cost-Optimal Electric Vehicle-Drone Routing Problem


    Beteiligte:
    Windras Mara, Setyo Tri (Autor:in) / Sarker, Ruhul (Autor:in) / Essam, Daryl (Autor:in) / Elsayed, Saber (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.12.2024


    Format / Umfang :

    17938063 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Electric Vehicle-Drone Routing Problem with Optional Drone Availability

    Windras Mara, Setyo Tri / Sarker, Ruhul / Essam, Daryl et al. | IEEE | 2023


    Memetic algorithm with adaptive local search for Capacitated Arc Routing Problem

    Yao, Tingting / Yao, Xin / Han, Shuangshuang et al. | IEEE | 2017


    [257] A MEMETIC ALGORITHM FOR THE VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS

    Gutierrez, Andres / Dieulle, Laurence / Labadie, Nacima et al. | TIBKAT | 2016


    A REVIEW OF MEMETIC ALGORITHM FOR CAPACITATED VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

    Pandey, Digesh / Srivastava, Namita | BASE | 2018

    Freier Zugriff

    A memetic algorithm for the open capacitated arc routing problem

    Fung, Richard Y.K. | Online Contents | 2013