The extraction of depth is a prerequisite for many applications in robotics and driver assistance. Examples are obstacle detection, collision avoidance, and parking. This paper presents a new Kalman filter based depth from motion approach. Thanks to multiple filters running in parallel the rate of convergence is significantly higher than in direct methods, especially if the vehicle drives slowly. A goodness-of-fit test fuses the states of the different filters in an optimum manner. In addition, this test allows to distinguish between static and moving obstacles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Kalman filter based depth from motion with fast convergence


    Beteiligte:
    Franke, U. (Autor:in) / Rabe, C. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    919585 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Kalman Filter based Depth from Motion with Fast Convergence

    Franke, U. / Rabe, C. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2005