Estimating and predicting traffic conditions in arterial networks using probe data has proven to be a substantial challenge. In the United States, sparse probe data represents the vast majority of the data available on arterial roads in most major urban environments. This article proposes a probabilistic modeling framework for estimating and predicting arterial travel time distributions using sparsely observed probe vehicles. We evaluate our model using data from a fleet of 500 taxis in San Francisco, CA, which send GPS data to our server every minute. The sampling rate does not provide detailed information about where vehicles encountered delay or the reason for any delay (i.e. signal delay, congestion delay, etc.). Our model provides an increase in estimation accuracy of 35% when compared to a baseline approach for processing probe vehicle data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Estimating arterial traffic conditions using sparse probe data


    Beteiligte:
    Herring, Ryan (Autor:in) / Hofleitner, Aude (Autor:in) / Abbeel, Pieter (Autor:in) / Bayen, Alexandre (Autor:in)


    Erscheinungsdatum :

    01.09.2010


    Format / Umfang :

    727500 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Estimating Urban Arterial Traffic Speed Distributions Using XGBoostLSS

    Boasiako Antwi, Eugene / Zhang, Xu / Chen, Mei | Transportation Research Record | 2024



    ADAS METHOD FOR ESTIMATING TRAFFIC DENSITY USING ADAS PROBE DATA

    KIM HYUNGJOO / SEO YOUNGHOON / LIM DONGHYUN | Europäisches Patentamt | 2022

    Freier Zugriff

    Performance Characterization of Arterial Traffic Flow with Probe Vehicle Data

    Remias, Stephen M. / Hainen, Alexander M. / Day, Christopher M. et al. | Transportation Research Record | 2013


    ADAS CONTROL SERVER FOR ESTIMATING TRAFFIC DENSITY USING ADAS PROBE DATA

    KIM HYUNGJOO / SEO YOUNGHOON / LIM DONGHYUN | Europäisches Patentamt | 2021

    Freier Zugriff