Accurate spatial-temporal traffic flow forecasting is essential for helping traffic managers take control measures and drivers to choose the optimal travel routes. Recently, graph convolutional networks (GCNs) have been widely used in traffic flow prediction owing to their powerful ability to capture spatial-temporal dependencies. However, designing the spatial-temporal graph adjacency matrix, which is essential to the success of GCNs remains an open question. This paper proposes a GCN-based traffic flow forecasting method that reconstructs the binary adjacency matrix via tensor decomposition. We first reformulate the spatial-temporal fusion graph adjacency matrix into a three-way adjacency tensor. Then, we use Tucker decomposition to reconstruct the adjacency tensor, encoding more informative and global spatial-temporal dependencies. Finally, we propose multiple Spatial-temporal Tensor Graph Convolution layers that assemble a Spatial-temporal Synchronous Graph Convolutional module for localized spatial-temporal correlations learning and a Dilated Convolution module for global correlations learning in parallel. This enables the comprehensive spatial-temporal dependencies of the road network to be aggregated and learned. Experimental results on four open-access datasets demonstrate that the proposed model outperforms state-of-the-art approaches in terms of prediction performances.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Spatial–Temporal Traffic Modeling With a Fusion Graph Reconstructed by Tensor Decomposition


    Beteiligte:
    Li, Qin (Autor:in) / Yang, Xuan (Autor:in) / Wang, Yong (Autor:in) / Wu, Yuankai (Autor:in) / He, Deqiang (Autor:in)


    Erscheinungsdatum :

    01.02.2024


    Format / Umfang :

    1767133 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Spatial–Temporal Tensor Graph Convolutional Network for Traffic Speed Prediction

    Xu, Xuran / Zhang, Tong / Xu, Chunyan et al. | IEEE | 2023


    Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction

    Hou, Hongxin / Ning, Nianwen / Shi, Huaguang et al. | IEEE | 2022


    Missing Traffic Data Imputation based on Tensor Completion and Graph Network Fusion

    Xia, Chengliang / Yin, Xiang / Yu, Junyang et al. | Transportation Research Record | 2025



    Traffic flow prediction method based on tensor decomposition and reconstruction fusion image

    LI QIN / YANG XUAN / ZHENG ZUOCAI et al. | Europäisches Patentamt | 2024

    Freier Zugriff