This paper introduces an equivalence-class approach to multi-target tracking. The approach seeks to address a fundamental limitation in multiple-hypothesis tracking: its selection (albeit with some delay and after reasoning over multiple hypotheses) of a unique global hypothesis. For some problems, the resulting tracking solution does a poor job with respect to metrics of interest. We seek instead to identify a class of similar hypotheses that have a larger aggregate likelihood than the maximum likelihood solution and, more importantly, whose members provide an improved tracking solution. Correspondingly, we introduce the Equivalence-Class MHT (ECMHT) and show its performance benefits in two-target tracking scenarios with a network of synchronous sensors.1 2


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An equivalence-class approach to multiple-hypothesis tracking


    Beteiligte:


    Erscheinungsdatum :

    01.03.2012


    Format / Umfang :

    462495 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multiple Hypothesis Tracking for Multiple Target Tracking

    Blackman, S.S. | Online Contents | 2004



    Multi-robot multiple hypothesis tracking for pedestrian tracking

    Tsokas, N. A. | British Library Online Contents | 2012


    TPP1.13 Object Tracking and Classification using a Multiple Hypothesis Approach

    Streller, D. / Dietmayer, K. / IEEE | British Library Conference Proceedings | 2004