In this paper, Cellular Neural Networks (CNNs) have been applied to noisy Synthetic Aperture Radar (SAR) image to improve its performance and appearance. The image has been obtained from Erzurum, Turkey. Because of the importance of imaging quality and appearance for remote sensing applications, CNN has been applied to data for image processing applications that for noise filtering and edge detection. In training, Recurrent Perceptron Learning Algorithm (RPLA) is used as a learning algorithm. According to templates SAR-image has been tested and obtained satisfactory results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Synthetic aperture radar image processing using cellular neural networks


    Beteiligte:
    Kent, S. (Autor:in) / Ucan, O.N. (Autor:in) / Ensari, T. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    214047 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Synthetic Aperture Radar Image Processing Using Cellular Neural Networks

    Kent, S. / Ucan, O. N. / Ensari, T. | British Library Conference Proceedings | 2003


    SYNTHETIC APERTURE RADAR IMAGE DISPLAY DEVICE

    NOZAKI TOMOYUKI | Europäisches Patentamt | 2016

    Freier Zugriff

    Processing of Synthetic-Aperture-Radar Data

    Di Cenzo, A. E. | NTRS | 1984


    Synthetic Aperture Radar

    Doerry, A. W. / Dickey, F. M. | British Library Online Contents | 2004


    Synthetic Aperture Radar

    Brown, William M. | IEEE | 1967