Vehicular Ad Hoc Networks (VANETs) are significant for providing services, applications, and communication to vehicles, connecting them to the outside world and supporting Intelligent Transportation Systems (ITS). Inside the car, the invehicle network (IVN), also known as CAN (Controller Area Network), handles communication between Electronic Control Units (ECUs) and sensors, ensuring the vehicle’s functionality and safety. However, external connections make this internal network vulnerable to unauthorized and malicious access. This work presents a comparative study of two bio-inspired metaheuristics (Bat and Ant Colony Optimization) for use in Intrusion Detection System (IDS) models. It focuses on machine learning-based classifiers to detect and classify anomalous and malicious traffic on the CAN bus.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intrusion Detection In-Vehicle Networks using Bio-Inspired Approaches




    Erscheinungsdatum :

    15.01.2025


    Format / Umfang :

    414145 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    VEHICLE INTRUSION DETECTION SYSTEM AND VEHICLE INTRUSION DETECTION METHOD

    KYUNG TAE HO | Europäisches Patentamt | 2018

    Freier Zugriff

    Vehicle intrusion detection system and vehicle intrusion detection method

    KYUNG TAE HO | Europäisches Patentamt | 2017

    Freier Zugriff

    A Survey of Intrusion Detection for In-Vehicle Networks

    Wu, Wufei / Li, Renfa / Xie, Guoqi et al. | IEEE | 2020


    SYSTEM FOR VEHICLE INTRUSION DETECTION

    JOO YOUNG MIN | Europäisches Patentamt | 2016

    Freier Zugriff

    Multi-device vehicle intrusion detection

    MOELLER DAVID E / MARAN RAHUL / CHAVAN ADITYA | Europäisches Patentamt | 2022

    Freier Zugriff