The problem of using noncausal hidden Markov models (HMMs) for texture classification is addressed. In noncausal models, the state of each pixel may be dependent on its neighbors in all directions. New algorithms are given to learn the parameters of a noncausal HMM of a texture and to classify it into one of several learned categories. The efficacy of these algorithms for texture classification is determined by classification experiments involving both synthetically generated and natural textures. A comparison to recent results in autocorrelation modeling demonstrates that similar classification accuracy can be achieved using noncausal HMMs that learn fewer parameters.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Texture classification using noncasual hidden Markov models


    Beteiligte:
    Povlow, B.R. (Autor:in) / Dunn, S.M. (Autor:in)


    Erscheinungsdatum :

    01.01.1993


    Format / Umfang :

    169661 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Hyperspectral Texture Classification Using Generalized Markov Fields

    Sarkar, S. / Healey, G. / IEEE Computer Society | British Library Conference Proceedings | 2004




    Color Texture Retrieval through Contourlet-Based Hidden Markov Model

    He, Z. / Bystrom, M. | British Library Conference Proceedings | 2005