We present a new technique that improves upon existing structure from motion (SFM) methods. We propose a SFM algorithm that is both recursive and optimal. Our method incorporates innovative information from new frames into an existing solution without optimizing every camera pose and scene structure parameter. To do this, we incrementally optimize larger subsets of parameters until the error is minimized. These additional parameters are included in the optimization by tracing connections between points and frames. In many cases, the complexity of adding a frame is much smaller than full bundle adjustment of all the parameters. Our algorithm is best described us incremental bundle adjustment as it allows new information to be added to art existing non-linear least-squares solution.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Propagation of innovative information in non-linear least-squares structure from motion


    Beteiligte:
    Steedly, D. (Autor:in) / Essa, I. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    819435 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Propagation of Innovative Information in Non-Linear Least-Squares Structure from Motion

    Steedly, D. / Essa, I. / IEEE | British Library Conference Proceedings | 2001


    The Least-Squares Error for Structure from Infinitesimal Motion

    Oliensis, J. | British Library Online Contents | 2005


    A Linear Least Squares Algorithm for Beatings-Only Target Motion Analysis

    IEEE; Aerospace and Electronics Systems Society | British Library Conference Proceedings | 1999



    NLSQ (non-linear least squares), Programmbeschreibung

    Dornauf, E. / Wissmann, J. | TIBKAT | 1977